Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add filters

Language
Document Type
Year range
1.
Journal of Population Therapeutics and Clinical Pharmacology ; 30(8):e78-e86, 2023.
Article in English | EMBASE | ID: covidwho-20241555

ABSTRACT

Spike protein is a receptor protein that has e role in the entry step of SARS-CoV2. This protein will bind to the ACE2 receptor in the human body and activate TMPRSS2. Inhibition of this protein will prevent the binding of the virus to host cells to spread the infection. This study aims to identify the activity of bioactive compounds of Merremia mammosa (Lour) tuber obtained from LC-MS/MS QTOF analysis of a previous study against the Spike protein of SARS-CoV2 using molecular docking and ADMET analysis. Molecular docking was conducted using SARS-CoV2 spike protein (PDB id. 6M0J) using Maestro Schrodinger software. Results showed that from 206 compounds there are 8 compounds of Merremia mammosa (Lour) that have lower predictive binding energies than standard drugs arbidol, hydroxychloroquine, and chloroquine. Result(s): 206 compounds of Merremia mammosa (Lour) tuber were successfully docked, there were 8 compounds that have docking scores more negative than standard drugs. It indicates that 8 compounds are more active than the positive controls. ADMET study revealed all of those potential ligands had the possibility to be developed as drugs. Conclusion(s): Molecular docking simulations were successfully utilized to identify the potential compounds from Merremia mammosa (Lour) tuber with the activity as an inhibitor for spike protein of SARS-CoV2. Further in vitro assay and purification are needed for future research.Copyright © 2021 Muslim OT et al.

2.
Biomedical and Pharmacology Journal ; 16(1):329-337, 2023.
Article in English | EMBASE | ID: covidwho-2298195

ABSTRACT

SARS-CoV-2 is a kind of coronavirus that produces Covid-19 illness, which is still a public health concern in Indonesia. Meanwhile, an effective drug has not yet been found and although vaccination has been carried out, in several regions and neighboring countries there is still an increase in Covid-19 cases. This study aimed to obtain bioactive compounds from sea urchins (Echinometra mathaei) that have greater antiviral potential and lower toxicity than remdesivir. This research was started by predicting druglikeness with SwissADME, followed ADMET predicition with pkCSM online, and docking of molecule using the Molegro Virtual Docker (MVD) 5.5 software against the main protease (Mpro) target (PDB ID: 6W63). The results showed that six compounds from sea urchins (Echinometra mathaei) had antiviral activity, where the bioactive compound from sea urchins (Echinometra mathaei) with the highest affinity was shown by Spinochrome C a smaller rerank score compared with Remdesivir and native ligand (X77). So that Spinochrome C compounds are candidates as SARS-CoV-2 inhibitors potential developed drug.Copyright Published by Oriental Scientific Publishing Company © 2023.

3.
J Adv Pharm Technol Res ; 12(2): 120-126, 2021.
Article in English | MEDLINE | ID: covidwho-1227116

ABSTRACT

Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) is a virus that causes the infectious disease coronavirus disease-2019. Currently, there is no effective drug for the prevention and treatment of this virus. This study aimed to identify secondary metabolites that potentially inhibit the key proteins of SARS-CoV-2. This was an in silico molecular docking study of several secondary metabolites of Indonesian herbal plant compounds and other metabolites with antiviral testing history. Virtual screening using AutoDock Vina of 216 Lipinski rule-compliant plant metabolites was performed on 3C-like protease (3CLpro), RNA-dependent RNA polymerase (RdRp), and spike glycoprotein. Ligand preparation was performed using JChem and Schrödinger's software, and virtual protein elucidation was performed using AutoDockTools version 1.5.6. Virtual screening identified several RdRp, spike, and 3CLpro inhibitors. Justicidin D had binding affinities of -8.7, -8.1, and -7.6 kcal mol-1 on RdRp, 3CLpro, and spike, respectively. 10-methoxycamptothecin had binding affinities of -8.5 and -8.2 kcal mol-1 on RdRp and spike, respectively. Inoxanthone had binding affinities of -8.3 and -8.1 kcal mol-1 on RdRp and spike, respectively, while binding affinities of caribine were -9.0 and -7.5 mol-1 on 3CLpro and spike, respectively. Secondary metabolites of compounds from several plants were identified as potential agents for SARS-CoV-2 therapy.

4.
J Adv Pharm Technol Res ; 11(4): 157-162, 2020.
Article in English | MEDLINE | ID: covidwho-886254

ABSTRACT

The coronavirus disease 2019 (COVID-19) pandemic has attracted worldwide attention. Andrographis paniculata (Burm. f) Ness (AP) is naturally used to treat various diseases, including infectious diseases. Its Andrographolide has been clinically observed for anti-HIV and has also in silico tested for COVID-19 main protease inhibitors. Meanwhile, the AP phytochemicals content also provides insight into the molecular structures diversity for the bioactive discovery. This study aims to find COVID-19 main protease inhibitor from AP by the molecular docking method and determine the toxicity profile of the compounds. The results obtained two compounds consisting of flavonoid glycosides 5,4'-dihydroxy-7-O-ß -D-pyran-glycuronate butyl ester and andrographolide glycoside 3-O-ß-D-glucopyranosyl-andrographolide have lower free binding energy and highest similarity in types of interaction with amino acid residues compared to its co-crystal ligands (6LU7) and Indinavir or Remdesivir. The toxicity prediction of the compounds also reveals their safety. These results confirm the probability of using AP phytochemical compounds as COVID-19 main protease inhibitors, although further research must be carried out.

SELECTION OF CITATIONS
SEARCH DETAIL